

SPE 199601

Large-Scale Deployment of a Closed-Loop Drilling Optimization System: Implementation and Field Results

Stephen Lai, James Ng, Aaron Eddy, Sergey Khromov, Dan Paslawski, Ryan van Beurden, Lars Olesen, **Pason Systems**

Gregory Payette, Benjamin Spivey, ExxonMobil Upstream Research Company

Introduction

- Reduce well cost:
 - Minimize spud-to-TD time.
 - Maximize ROP / minimize flat-time.
- Rotary drilling optimized by continuous adjustment of process parameters (WOB, RPM).
- Challenge: Formations can change rapidly.
- Automation solution:
 - Closed-loop system based on proven advisory application.
 - Field results from 270 rigs and 1700 wells.

Control Scheme

Driller supervises process and manages parameter limits.

Main Optimization Loop

Main loop runs once per second:

- If drilling dysfunction is detected,
 mitigation protocol is executed.
- If autodriller (ADR) is not in good state,
 - ADR management protocol is executed.
- Otherwise,
 - perform ROP/MSE optimization.

ROP/MSE Optimization

Challenges:

- Formation variation is random and non-stationary.
- Drilling process is difficult to model accurately.
- Scalability must work at all rigs/formations/basins.

Solution:

- Extremum Seeking Control (input signal dithering):
 - Simple minimal tuning parameters.
 - Adaptable continuously seeks the peak.
 - Robust no model-based assumptions.

5

IADC/SPE International Drilling Conference and Exhibition

3–5 March 2020 Galveston Island Convention Center, Galveston, Texas

ROP/MSE Optimization

6

Dysfunction Mitigation

When drilling dysfunction is detected, an automated protocol is used to remove the condition.

Stick-Slip Protocol

- Stick-slip protocol
- Stringer protocol
- RCD protocol •
- Motor stall protocol •
- Etc. •

Autodriller (ADR) Management

- Operating state of ADR is critical for closed-loop optimization.
- ADR control issues^[1]:
 - Poor setpoint tracking.
 - Control loop oscillations.
- ADR should be in a favorable control state for optimization.

ADR Condition	System Response
Control loop oscillations	Adjust setpoints to put ADR back in WOB-control mode
Torque limiting	
DIFP limiting	

[1] Pastusek et al. "Drill Rig Control Systems: Debugging, Tuning, and Long Term Needs". SPE-181415.

Large-Scale Deployment of a Closed-Loop Drilling Optimization System

Stephen Lai

Deployment Challenge #1: Human Factors

- Organizational buy-in is needed^[2].
- User trust is needed:
 - Driller must have confidence that system operating as designed \rightarrow notifications/alerts.

[2] Behounek et al. "Change Management Challenges Deploying a Rig-Based Drilling Advisory System". SPE-194184.

Deployment Challenge #2: Conservative Parameter Limits

For optimal drilling, true equipment limits should be used.

Large-Scale Deployment of a Closed-Loop Drilling Optimization System

10

Deployment Challenge #3: Following the Limit Roadmap

Bad Practice:

- Small optimization window
- Frequent, ad-hoc changes

Good Practice:

- Wide limit window
- Infrequent changes
- Allow system to optimize

Large-Scale Deployment of a Closed-Loop Drilling Optimization System

11

IADC/SPE International Drilling Conference and Exhibition

3–5 March 2020 Galveston Island Convention Center, Galveston, Texas

Field Deployment

13

Stephen Lai

ROP Improvement

Each drilling trial has 3 consecutive wells.

Conclusions

- Formations change rapidly \rightarrow need closed-loop optimization:
 - Simple (no model) algorithm is best for scalability.
 - Mitigate dysfunction with triggered protocols.
 - Create a good limit roadmap and follow it.
- Large-scale deployment: 270+ rigs, 1700+ wells, 8 countries.
- Average rotary ROP improvement of 7% (top quartile = 18%) in 90 drilling trials.

Acknowledgements / Thank You / Questions

Special thanks to:

The staff at ExxonMobil Upstream Research Company.

The many field and office personnel who contributed to deployment of this system.

Mark Pawson, David Holoboff, Abdulkareem Dolapo, and Usman Farooq.